Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sema Öztürk, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* Edmont Stoyanov, }}{ }^{\text {b }}$ Orhan Büyükgüngör ${ }^{c}$ and Dieter Heber ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\mathbf{b}}$ Faculty of Pharmacy, Medical University of Sofia, Dunav 2, Sofia 1000, Bulgaria, ${ }^{\text {c }}$ Department of Physics, Ondokuz Mayıs University, 55139 Samsun, Turkey, and
dPharmaceutical Institute, University of Kiel, Gutenbergstraße 76, D-24118 Kiel, Germany

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators
Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.108$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Methyl 6-amino-5-cyano-2-methoxy-carbonylmethyl-4-phenyl-4H-pyran-3-carboxylate

The pyran ring in the title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$, adopts a boat conformation. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

A series of $4 H$-pyran and cyclohexanone derivatives was prepared via the three-component reaction of dimethyl acetonedicarboxylate, aromatic aldehydes and malononitrile. We present here the structure of the title compound, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The O1C 1 and $\mathrm{O} 1-\mathrm{C} 5$ bond lengths are 1.387 (2) and 1.363 (2) \AA, respectively (Table 1). The mean $\mathrm{C}=\mathrm{O}$ bond length of 1.198 (2) \AA is typical of a double bond, and is consistent with a previously published structure (Nesterov \& Viltchinskaia, 2001). The phenyl ring system is planar within 0.003 (1) \AA. The pyran ring adopts a boat conformation, with atoms O1 and C3 deviating from the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4 / \mathrm{C} 5$ plane by 0.079 (1) and 0.111 (1) Å, respectively (Cremer \& Pople, 1975).

The crystal packing (Fig. 2) is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2).

Experimental

Compound (I) was synthesized according to the method of Heber \& Stoyanov (2003).

Figure 1

A view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=328.32$
Triclinic, $P \bar{P}$
$a=8.1635(8) \AA$
$b=10.0366(9) \AA$
$c=10.6641(10) \AA$
$\alpha=67.340(7)^{\circ}$
$\beta=87.008()^{\circ}$
$\gamma=76.740(7)^{\circ}$
$V=784.17(14) \AA^{\circ}$
Data collection
Stoe IPDS-II diffractometer ω scans
Absorption correction:
by integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.968, T_{\text {max }}=0.981$
11291 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.108$
$S=1.05$
3065 reflections
225 parameters

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.390 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 8916 \\
& \quad \text { reflections } \\
& \theta=2.1-27.0^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Prism, colorless } \\
& 0.40 \times 0.33 \times 0.27 \mathrm{~mm}
\end{aligned}
$$

3065 independent reflections
2265 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0681 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.3874(18)$	O4-C16	$1.317(2)$
O1-C5	$1.3631(18)$	O4-C17	$1.444(2)$
O2-C13	$1.202(2)$	O5-C16	$1.193(2)$
O3-C13	$1.326(2)$	N1-C6	$1.145(2)$
O3-C14	$1.444(2)$	N2-C5	$1.336(2)$
C1-O1-C5	$120.16(11)$	N1-C6-C4	$177.64(17)$
C13-O3-C14	$117.52(13)$	O3-C13-C2	$115.45(13)$
C16-O4-C17	$117.07(14)$	O2-C13-O3	$122.24(15)$
O1-C1-C15	$106.70(12)$	O2-C13-C2	$122.32(15)$
O1-C1-C2	$122.21(14)$	O4-C16-O5	$124.03(15)$
O1-C5-N2	$110.40(13)$	O4-C16-C15	$113.32(14)$
O1-C5-C4	$121.13(13)$	O5-C16-C15	$122.65(15)$
N2-C5-C4	$128.47(15)$		
C1-O1-C5-N2	$173.34(12)$	C1-C2-C13-O3	$0.1(2)$
C14-O3-C13-C2	$176.63(13)$	C3-C2-C13-O2	$-2.4(2)$
C14-O3-C13-O2	$-3.6(2)$	C1-C2-C13-O2	$-179.64(15)$
C17-O4-C16-O5	$1.4(3)$	C6-C4-C5-N2	$-0.1(2)$
C17-O4-C16-C15	$-177.66(15)$	C3-C4-C5-N2	$172.46(14)$
C2-C1-C15-C16	$94.67(19)$	C1-C15-C16-O5	$163.51(16)$
O1-C1-C15-C16	$-81.92(15)$	C1-C15-C16-O4	$-17.38(19)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.853(19)$	$2.186(19)$	$3.038(2)$	$176.8(15)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.89(2)$	$2.24(2)$	$3.132(2)$	$177.8(16)$

Symmetry codes: (i) $x-1, y, z$; (ii) $1-x,-y, 2-z$.

Figure 2
The crystal packing and hydrogen bonding (dashed lines) in (I). [Symmetry codes: (i) $x-1, y, z$; (ii) $1-x,-y, 2-z$; (iii) $1+x, y, z$.]

The C -bound H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms. The amino H atoms, $\mathrm{H} 2 A$ and $\mathrm{H} 2 B$, were located in a difference Fourier map and their positional and isotropic displacement parameters were refined.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayis University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F. 279 of the University Research Fund).

References

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Heber, D. \& Stoyanov, E. V. (2003). Synthesis, 2, 227-232.
Nesterov, V. N. \& Viltchinskaia, E. A. (2001). Acta Cryst. C57, 616-618.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

